

REVISION HISTORY

Revision	Description	Date
V1.0	New release	February 2022

1. Product Introduction

1.1. Overview

The Industrial microSD Card is designed for demanding industrial applications.

The Industrial microSD Card is compatible with SD 3.0 and provides excellent performance.

The built-in auto ECC function can detect and correct errors during data transfer.

Moreover, the Industrial microSD Card supports Ultra High Speed (UHS) interface transfer mode, provides high write/read data transfer rate, high random IOPS, sudden Power-Fails protection, adaptive static wear-leveling, read/program disturb management, etc.

It was designed to meet the high quality, high reliability, high performance, and versatile environmental requirements.

1.2. Product Features

- Interface: 8 pins microSD standard interface
- Compliant SD Card Specification Ver. 3.0 / 4.1 / 5.1 / 6.1
- Density support:
 - TLC:64GB~512GB
 - aTLC (Advanced TLC, single bit per cell TLC): 16GB~128GB
- Bus Speed Mode:
 - DS-Default Speed mode: 3.3V signaling, frequency up to 25MHz, up to 12.5MB/sec
 - HS-High Speed mode: 3.3V signaling, frequency up to 50MHz, up to 25MB/sec
 - SDR12: 1.8V signaling, frequency up to 25MHz, up to 12.5MB/sec
 - SDR25: 1.8V signaling, frequency up to 50MHz, up to 25MB/sec
 - SDR50: 1.8V signaling, frequency up to 100MHz, up to 50MB/sec
 - SDR104: 1.8V signaling, frequency up to 208MHz, up to 104MB/sec
 - DDR50: 1.8V signaling, frequency up to 50MHz, sampled on both clock edges, up to 50MB/s
- Operating at -25°C to 85°C
- Flash: 3D-TLC NAND Flash (SanDisk Bics4)
- Controller: ET1289
- Program/Erase Cycle:
 - TLC: 3,000 Cycles
 - aTLC: 30,000 Cycles
- Built-in ECC corrects up to 120bits/1 KB
- Read disturbance management (Auto-Refresh)
- Adaptive wear leveling
- Management of sudden power-fails
- SMART Function support
- aTLC (Advanced TLC, single bit per cell TLC) support, enhance the performance and product endurance

1.3. TBW (Tera Bytes Written)

Capacity	16GB	32GB 64GB		128GB	256GB	512GB
TLC	1	ı	TBD	TBD	TBD	TBD
aTLC	366.6TB	735.1TB	1469.9TB	2932.8TB	ı	1

^{*}The endurance of disk could be varying based on user behavior, NAND endurance cycles, and write amplification factor. It is not guaranteed by flash vendor.

2. microSD Card Interface Description

keep compatibility to Multi-media Cards.

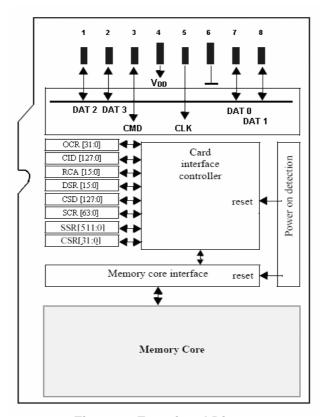
2.1 microSD Pin Assignment

Pin#	Name	Туре	SD Description
1	DAT2	I/O	Data Line [Bit2]
2	CD/DAT3	I/O	Card Detect / Data Line [Bit3]
3	CMD	PP	Command / Response
4	VDD	S	Supply Voltage
5	CLK	ļ	Clock
6	VSS	S	Supply Voltage Ground
7	DAT0	I/O	Data Line [Bit 0]
8	DAT1	I/O	Data Line [Bit 1]

Table 1: SD Bus Mode Pin Definition

Notes:

- 1) S: power supply; I: input; O: output using push-pull drivers; PP: I/O using push-pull drivers.
- 2) The extended DAT Lines (DAT1-DAT3) are input on power up. They start to operate as DAT lines after SET_BUS_WIDTH command. The Host shall keep its own DAT1-DAT3 lines in input mode, as well, while they are not used. It is defined so, in order to
- 3) After power up this line (Pin2) is input with 50Kohm pull-up (can be used for card detection or SPI mode selection). The pull-up should be disconnected by user,


during regular data transfer, with SET_CLR_CARD_DETECT (ACMD42) command.

Pin#	Name	Туре	SD Description
1	RSV		Reserved
2	CS	1	Chip Select (neg true)
3	DI	I	Data In
4	VDD	S	Supply Voltage
5	SCLK	I	Clock
6	VSS	S	Supply Voltage Ground
7	DO	0	Data Out
8	RSV		Reserved

Table 2: SPI Bus Mode Pin Definition

^{*}Client workload by JESD-219A

Figure 1: Functional Diagram

3. Specifications

3.1. Performance

Max. Data Transfer Rate

■ Read: 90MB/s; Write: 70MB/s

3.2. NAND Flash Memory

Industrial microSD Card uses Triple Level Cell (TLC) NAND Flash memory, which is non-volatility, high reliability and highspeed memory storage.

3.3. Power Requirement

3.3.1. DC Input Voltage

■ 2.7V to 3.6V

3.4. Temperature Range

■ -25°C to +85°C

3.5. Humidity

Relative Humidity: 5-95%, non-condensing

3.6. Waterproof

Waterproof level: IEC 60529 IPX8.

Test Condition	Referred standard			
Depth of water 1.5m for 30 mins.	IEC 60529 IPX8			

3.7. ESD Ability

Test Condition	Referred standard				
● Contact discharge: ± 2KV, ± 4KV	SD Spec. Appendix D.1				
● Air discharge: ± 4KV, ± 8KV, ± 15KV	SD Spec. Appendix D.2				

3.8. Dust proof

Dust proof level: IEC 60529 IP6X.

Test Condition	Referred standard
Depression of 2 KPa, Talcum powder 2kg/m³, 8 hrs.	IEC 60529 IP6X

6

4. Electrical Specifications

4.1 General DC Character

Table 3: General DC Character

Parameter	Symbol	Min	Max	Unit	Remark
Peak voltage on all lines	_	-0.3	3.6	V	
All input leakage current	_	-10	10	μA	
All output leakage current	_	-10	10	μA	
Supply voltage for low voltage range	VDDL	_	_	V	
Supply voltage for high voltage range	VDDH	2.7	3.6	V	
Supply voltage differential	_	-0.5	0.5	V	

4.2 Bus Signal Line Loading

Table 4: Bus Signal Line Loading

Parameter	Symbol	Min	Max	Unit	Remark
Pull up resistance for SD command line	Rсмd	4.7	100	ΚΏ	
Pull up resistance for SD data line	RDAT	10	100	ΚΏ	
Total Bus capacitance for each signal line	C∟	_	30	pF	
Signal line inductance	_	_	16	pF	
Pull-up resistance inside card (pin 1)	RDAT3	10	150	ΚΏ	

4.3 Bus Signal Levels

As the bus can be supplied with a variable supply voltage, all signal levels are related to the supply voltage.

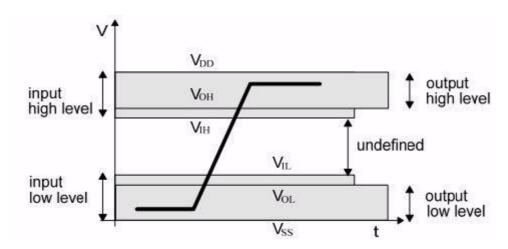


Figure 4: Bus Signal Levels

			_		
Parameter	Symbol	Min	Max	Unit	Remark
Output High Voltage	Vон	2.4	_	V	$V_{DD} = 3.3V$
Output Low Voltage	Vol	_	0.4	V	$V_{DD} = 3.3V$
Input High Voltage	ViH	2.0	3.6	V	$V_{DD} = 3.3V$
Input Low Voltage	Vıl	-0.3	8.0	V	$V_{DD} = 3.3V$
Output High Voltage	Vон	1.4	_	V	$V_{DD} = 1.8V$
Output Low Voltage	Vol	_	0.45	V	$V_{DD} = 1.8V$
Input High Voltage	ViH	1.26	2.1	V	$V_{DD} = 1.8V$
Input Low Voltage	VIL	-0.3	0.58	V	$V_{DD} = 1.8V$

Table 5: Bus Signal Level

4.4 Bus Timing (Default Speed Mode)

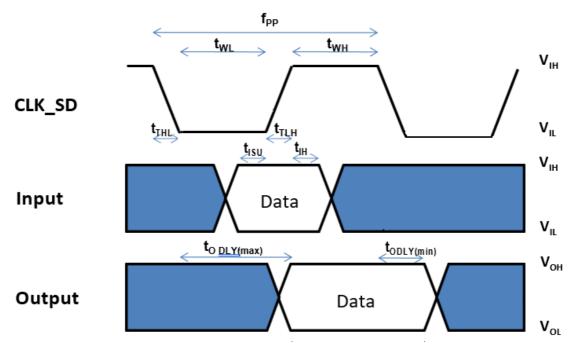


Figure 5: Timing diagram data input/output referenced to clock (Default Speed Mode)

Table 6: Bus Timing - Parameters Values (Default Speed)

Parameter	Symbol	Min.	Max.	Unit	Remark			
Input CLK_SD								
Clock frequency data transfer mode	fpp	l	25	MHz	C _L ≦ 10pF (1 card)			
Clock frequency Identification mode	fod	-	400	KHz	C∟≦ 10pF (1 card)			
Clock low time / Clock high time	tw∟/twн	10	_	ns	C∟≦ 10pF (1 card)			
Clock rise time / Clock fall time	tтьн/tтнь	_	10	ns	C∟≦ 10pF (1 card)			
Input CMD_SD/DATA_SD, referenced to CLK	_SD							
Input set-up time	t ısu	5	_	ns	C∟≦ 10pF (1 card)			
Input hold time	tıн	5	_	ns	C∟≦ 10pF (1 card)			
Output CMD_SD/DATA_SD, referenced to CLK_SD								
Output Delay time during Data Transfer Mode	todly	_	14	ns	C∟≦ 40pF (1 card)			
Output Delay time during Identification Mode	todly	_	50	ns	C _L ≦ 40pF (1 card)			

⁽¹⁾ All timing values are measured relative to 50% of voltage level.

⁽²⁾ Rise and fall times are measured from 10% - 90% of voltage level.

4.5 Bus Timing (High-Speed Mode)

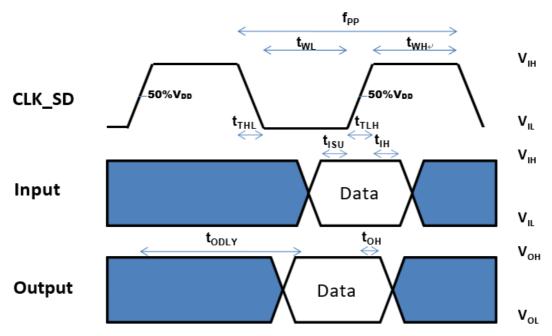


Figure 6: Timing diagram data input/output referenced to clock (High-Speed Mode)

Table 7: Bus Timing - Parameters Values (High-Speed)

Parameter	Symbol	Min.	Max.	Unit	Remark		
Input CLK_SD							
Clock frequency data transfer mode	fpp	0	50	MHz	C∟≦ 10pF (1 card)		
Clock low time / Clock high time	tw∟/twн	7	_	ns	C∟≦ 10pF (1 card)		
Clock rise time / Clock fall time	t тьн/ t тнь	_	3	ns	C _L ≦ 10pF (1 card)		
Input CMD_SD/DATA_SD, referenced to CLK_SD							
Input set-up time	t ısu	6	_	ns	C∟≦ 25pF (1 card)		
Input hold time	tıн	2	_	ns	C∟≦ 25pF (1 card)		
Output CMD_SD/DATA_SD, referenced to CI	K_SD	•					
Output Delay time during Data Transfer Mode	todly	_	14	ns	C∟≦ 40pF (1 card)		
Output hold time	tон	2.5	_	ns	C∟≧ 15pF (1 card)		
Total System capacitance for each line	CL	_	40	pF			

- (1) All timing values are measured relative to 50% of voltage level.(2) Rise and fall times are measured from 10% 90% of voltage level.

Table 8: Bus Timing - Parameters Values (SDR104/SDR50/SDR25/SDR12)

Parameter	Symbol	Min.	Max.	Unit	Remark	
Input CLK_SD						
Clock frequency data transfer mode	fpp	0	208	MHz	C _L = 10pF	
Clock cycle time	t clk	4.8	_	ns	C _L = 10pF	
Clock duty cycle		30	70	%		
Clock rise time / Clock fall time	tтьн/tтнь	_	0.2*t ськ	ns	C∟ = 10pF	
Input CMD_SD/DATA_SD, referenced to CLK_SD						
Input set-up time for SDR104	t ısu	1.4	_	ns	C∟ = 10pF	
Input set-up time for SDR50	t ısu	3	_	ns	C∟ = 10pF	
Input hold time	tıн	0.8	_	ns	C∟ = 5pF	
Output CMD_SD/DATA_SD, referenced to CLK_SD						
Output Delay time for SDR50	todly		7.5	ns	C∟ = 30pF, using driver Type B	
Output Delay time for SDR25 and sdr12	t odly		14	ns	C∟ = 40pF, using driver Type B	
Output hold time	t on	1.5	_	ns	C∟ = 15pF	
Total System capacitance for each line	CL	_	40	pF		

4.6 Bus Timing (DDR Mode)

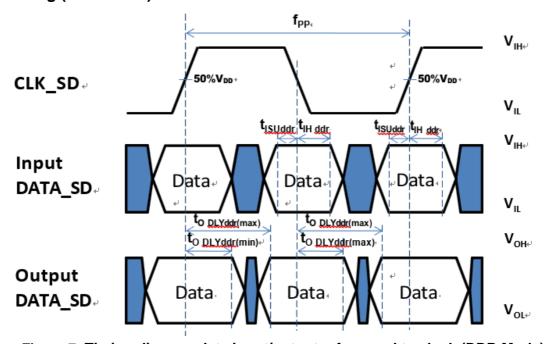
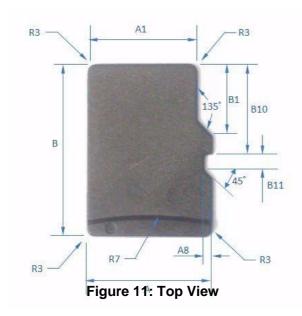
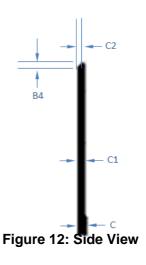
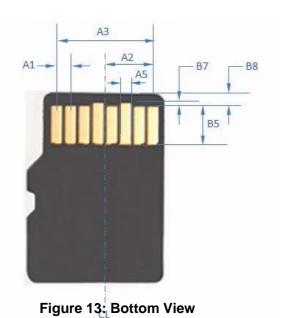


Figure 7: Timing diagram data input/output referenced to clock (DDR Mode)


Table 9 : Bus Timing - Parameters Values(DDR)


Parameter	Symbol	Min.	Max.	Unit	Remark
Input CLK_SD					
Clock duty cycle		45	55	%	
Input CMD_SD, referenced to CLK_SD					
Input set-up time	t ısu	3		ns	C _L ≦ 10pF (1 card)
Input hold time	tıн	0.8		ns	C _L ≦ 10pF (1 card)
Output CMD_SD, referenced to CLK_SD					
Output Delay time during data transfer mode	todly	_	13.7	ns	C∟≦ 30pF (1 card)
Output hold time	tон	1.5		ns	C∟≧ 15pF (1 card)
Input DATA_SD, referenced to CLK_SD					
Input set-up time	t ISUddr	3		ns	C∟≦ 10pF (1 card)
Input hold time	t ıHddr	0.8	_	ns	C∟≦ 10pF (1 card)
Output DATA_SD, referenced to CLK_SD					
Output Delay time during data transfer mode	t ODLYddr	_	7	ns	C _L ≦ 25pF (1 card)
Output hold time	t OHddr	1.5		ns	C _L ≧ 15pF (1 card)



5. Mechanical Dimensions

The mechanical dimensions of industrial microSD card were basically followed the mechanical form factor definitions on microSD card specifications which constructed by SD card association.

Criteria o	f microSD	<u> </u>		Unit: mm
Dimensions	Min	TYP	Max	Note
A	10.90	11.00	11.10	
A1	9.60	9.70	9.80	
A2		3.85		BASIC
A3	7.60	7.70	7.80	
A4		1.10		BASIC
A5	0.75	0.80	0.85	
A8	0.60	0.70	0.80	
В	14.90	15.00	15.10	
B1	6.13	6.23	6.33	
B4	0.42	0.52	0.62	
B5	2.80	2.90	3.00	
В7	0.20	0.30	0.40	
B8	1.00	1.10	1.20	
B10	7.80	7.90	8.00	
B11	1.10	1.20	1.30	
R3	0.70	0.80	0.90	
R7	29.50	30.00	30.50	
С	0.90	1.00	1.10	
C1	0.60	0.70	0.80	
C2	0.20	0.30	0.40	

Heits rom

6. Ordering Information

Flash Type	Part Number	Capacity	Note
TLC	ADM1U1064G3DCEDES	64GB	TBD
	ADM1U1128G3DCEDES	128GB	TBD
TLC	ADM1U1256G3DCEDES	256GB	TBD
	ADM1U1512G3DCEDES	512GB	TBD
	ADM1U1016GPDCEDES	16GB	
aTLC	ADM1U1032GPDCEDES	32GB	
	ADM1U1064GPDCEDES	64GB	
	ADM1U1128GPDCEDES	128GB	

13